Keeping the World Flowing for Future Generations # **R** series RCx-AC-xxxAx-8.09 user manual # RCx-AC-xxxAx-8.09 (110-240 VAC; 4-20 mA Control) # Hazardous Location (Only models RCx-AC-BxxAx w/ ex-proof lid engraving) ## **USER MANUAL** #### **Contents** | INTENDED USE | 3 | |--|----| | MANUFACTURER DETAILS | 3 | | MEANING OF SYMBOLS | 3 | | INSTALLATION | 3 | | Environmental Conditions | 3 | | Mounting | 4 | | Grounding and Securing | 4 | | Wiring | 5 | | Wiring for Explosion Proof Actuators | 5 | | Wiring for Non-Explosion Proof actuators | 6 | | Power Supply and Current Draw | 6 | | Control Signal and Feedback | 7 | | GENERAL SPECIFICATIONS | 8 | | OPERATION | 9 | | DIP Switches | 9 | | Controlling the Actuator | 10 | | Changing the number of turns | 10 | | Torque Settings | 11 | | Speed and Torque Details | 11 | | Signal Loss and Calibration | 13 | | Manual Override | 14 | | Troubleshooting | 14 | | CERTIFICATIONS | 15 | | Hazardous Location Rating (Ex) | 15 | | Electrical Compliance (EC) | 16 | | Electromagnetic Compatibility (EMC) | 16 | | Dust and Water Ingress Protection (IP) | 16 | | ACTUATOR DIMENSIONS | 17 | | PART NUMBER BREAKDOWN | 20 | | LABEL BREAKDOWN | 21 | | | | #### **INTENDED USE** Rotork R-Series actuators are intended to be used in combination with any valve to regulate the flow automatically. The output of the actuator is rotary or linear, and is paired with the valve stem to achieve the desired flow control. #### MANUFACTURER DETAILS Rotork manufactures the R-Series actuator at the following facilities: Hanbay Inc. 135 Brunswick Blvd. Pointe-Claire, QC H9R5N2 Canada Fairchild Industrial Products Company 3920 West Point Blvd. Winston Salem, NC 27103 USA #### **MEANING OF SYMBOLS** The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the product. The Lightning Flash with arrowhead symbol within an equilateral triangle, is intended to alert the user to the presence of un-insulated "dangerous voltage" within the product enclosure that may be of sufficient magnitude to constitute a risk of shock to persons. #### **INSTALLATION** The safety of any system incorporating the equipment is the responsibility of the assembler of the system. #### **Environmental Conditions** The R-Series actuator has an IP68 rating and is recommended for outdoor use. The relative humidity of the environment has no effect on the R-Series. The ambient temperature range for the standard R-Series is -20 to 40 °C (-4 to 104 °F). The internal heater option shifts the temperatures to a lower range of -40 to 40 °C (-40 to 104 °F). The standard R-Series has been approved for use at altitudes of up to 2000 m. ## **Mounting** The holes indicated in the image are intended for a mounting bracket. They are threaded for $\frac{1}{4}$ -20 and are 0.4" deep. ## **Grounding and Securing** The other two visible holes are threaded 10-32, 0.50" deep, and are intended to be used to lock the lid in position (top) and as an external grounding connection (bottom) using user-supplied screws. For detailed dimensions see p.15. Additionally, there is a grounding connection supplied internally. ## Wiring #### **Wiring for Explosion Proof Actuators** The **RCx-AC-BxxAx** Explosion-Proof actuator does **not** come with a pre-installed cable, nor cable gland. A cable gland that meets site specifications for the appropriate hazardous location rating is required for installation. The cable gland and the cable for hazardous location should be installed by qualified personnel in accordance with site and local requirements. The actuator comes standard with a $\frac{1}{2}$ " FNPT thread cable entry. See p.15 for location of $\frac{1}{2}$ " FNPT housing access. A cable with 6 wires is required; it is recommended to use 3x 16 AWG for wires supplying power and ground, and 3x 20 AWG for wires used for the control and feedback signals. #### Standards for cable gland and cable in hazardous locations: | Compliance Standards
Required to be Met | Cable Types Permitted in
Class I Division 1
Hazardous Locations | |--|---| | ANSI / UL 514B, ANSI / UL
1203, ANSI / UL 2225, C22.2 | Non-Armored Extra Hard
Usage Cord & TC-ER-HL | | ANSI / UL 514B, ANSI / UL
1203, ANSI / UL 2225 | Armored IEEE 45 & IEEE 1580 Marine Shipboard Cable | | ANSI / UL 514B, ANSI / UL
1203, ANSI / UL 2225 | MC-HI, ITC-HL | | ANSI / UL 514B, ANSI / UL
1203, C22.2 | Teck 90 (Canada Only) | ^{*} In explosion-proof models, the FNPT thread is not intended for conduit connection. Cable gland only. Once the cable and cable gland are installed, connect the wires to the pins on the terminal block as indicated here: | Pin | Function | |-----|--| | 6 | Pre-wired to transformer | | | Connect live wire to loose black cable | | | with crimp connector (see p.6) | | 5 | Pre-wired to transformer | | | Connect neutral wire to loose white | | | cable with crimp connector (see p.6) | | 4 | Feedback signal (4-20 mA)* | | 3 | Not connected | | 2 | Isolated** input signal gnd. | | 1 | Isolated** input signal (4-20 mA) | ^{* &}quot;feedback" available in RCx-AC-xxxAF version only ^{** &}quot;isolated" available in RCx-AC-xxxAI and xxxAF versions only If the sensing resistor R66 is removed, we recommend placing a 10K resistor between signal and signal GND, or simply using shielded cables (for noise reduction). #### Wiring for Non-Explosion Proof actuators The actuator comes standard with a pre-installed cable gland and a 10' cable. Cut the cable to the length required, then connect according to the following wire color schematic: #### Wire color schematic for cable | Colour | Function | |------------|--| | Red (1) | Live 110-240 VAC (18 AWG) | | Black (2) | Neutral 110-240 VAC (18 AWG) | | Green (3) | Earth ≟ (18 AWG) | | Yellow (4) | Ground ↓ (22 AWG) | | Grey (5) | Feedback* signal (22 AWG) | | Brown (6) | Isolated** input signal gnd. (22 AWG) | | Blue (7) | Isolated** input signal 4-20 mA (22 AWG) | ^{* &}quot;feedback" available in RCx-AC-xxxAF version only ** "isolated" available in RCx-AC-xxxAI and xxxAF versions only ## **Power Supply and Current Draw** The **RCx-AC-xxxAx** actuator may be connected to voltages within 110-240 VAC at 50/60 Hz. The AC supply to the actuator must be limited by a 1.5 A fuse or circuit breaker; it is recommended to have this installed near the actuator. The current draw will range from minimum 10 mA to maximum 1.5 A while the actuator is active. When not moving, the actuator draws approx. 5 mA. AC power is connected to the **WHITE** & **BLACK** wires with crimp connectors (WM18225-DN & WM18230-ND 18-22 AWG). Ground is connected on the **GREEN** ground screw, shown below. ## **Control Signal and Feedback** Locate the correct connection terminals/wires as shown on the previous page, then connect your input signal on positions 1 and 2 (yellow and blue wires) as shown below. Feedback, if applicable, is connected to position 4 (grey wire). The actuator 4-20 mA output is internally supplying the signal current and can drive sufficient voltage for any sensing resistor of up to 250 ohms. The potential of the external GND after the sensing resistor may not be more than +6 VDC / -2 VDC away from the power GND of the actuator. This feedback signal output is only available in RCx-AC-xxxAF model actuators. ## **GENERAL SPECIFICATIONS** | Stall protection | Electronic position and motion detection | | |---|---|--| | Gears & Bearings | Metal and bronze, oiled/greased for life | | | External fasteners | Stainless Steel | | | Life Expectance | 250'000 cycles in specified conditions | | | Motor | Brushless DC motor, computer control | | | Positioning precision | ± 0.25° | | | Positioning resolution | ± 0.15° max. | | | End travel detection | By motion detection | | | Power setting | Adjustable | | | Mechanical Shock | Repeated ≤130 g-force, no effect
Occasional ≤150g-force, no effect
>150 g-force not tolerated | | | Mechanical Vibration | Random SAE J1211, Chassis, Exterior | | | Thermal Shock | -20 to +60 °C (-4 to 140 °F) in 10 min. | | | Weight | RxJ, RxL, RxM: 980 g
RxH, RxF: 1700 g | | | Isolated Signals
(AI & AF models only) | Optical isolation min. 1000 V | | | <u> </u> | | | ## **OPERATION** #### **DIP Switches** The DIP switches allow you to change the settings on your actuator. To flip a switch, gently use a small flat-head screwdriver. See table below for DIP switch functionality. In this example DIPs 1, 2, 5 and 12 are on. | DIP | Function | |-----|---| | 1 | Speed: Choose how quickly the actuator will turn the valve. See p.11. | | 2 | | | 3 | Only in the ON position for actuator model RCH (with external gear stage). | | 4 | Turns: The actuator usually ships from the factory with the recommended number of turns for the | | 5 | valve. However, this number can be changed. Turning on a switch will add a specific number of | | 6 | turns to the actuator's movement. | | 7 | See p.11 for relation between positions of the DIP switches and number of turns. | | 8 | Example: Turning on DIP 6 adds four turns, turning on DIP 8 adds one turn. If both DIP 6 and 8 are | | | on, then the total turns of the actuator would be five. | | 9 | Signal loss: See p.13. | | 10 | Seating torque: Set how much torque the actuator exerts on the valve lever during the calibration | | 11 | (finding valve seat) procedure. See p.11. | | 12 | Direction/Calibration: Toggle switch on and off while powered to re-calibrate actuator (find valve | | | seat). Also sets direction in which the actuator will open and close. See p.13. | | | Example: The RCM model actuator turns clockwise when the signal is decreased with DIP 12 in the | | | OFF position. Putting DIP 12 in the ON position will cause counter-clockwise turning for a decrease | | | in signal. For changes in DIP 12 position to take effect, the power to the actuator must be cycled. | ## **Controlling the Actuator** The 4-20 mA (or 1-5 V / 1-10 V) input signal represents a total span of a number of turns. I.e.: If you set the number of turns to 2, then a signal of 12 mA will set the actuator to exactly 1 turn from the fully closed position. 15 mA will give: $(15-4)/16=0.6875 \Rightarrow 68.75\%$ of 2 turns $\Rightarrow 1.375$ turns from closed. #### Changing the number of turns With the DIP switch settings, you can adjust anything between 1 and 31 turns to represent the full signal range of 4-20 mA. Check in the table below. (1 = "On", 0 = "Off"). | Total Turns
Dip4=0 | DIP 5 | DIP 6 | DIP 7 | DIP 8 | |-----------------------|-------|-------|-------|-------| | reserved | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 1 | | 2 | 0 | 0 | 1 | 0 | | 3 | 0 | 0 | 1 | 1 | | 4 | 0 | 1 | 0 | 0 | | 5 | 0 | 1 | 0 | 1 | | 6 | 0 | 1 | 1 | 0 | | 7 | 0 | 1 | 1 | 1 | | 8 | 1 | 0 | 0 | 0 | | 9 | 1 | 0 | 0 | 1 | | 10 | 1 | 0 | 1 | 0 | | 11 | 1 | 0 | 1 | 1 | | 12 | 1 | 1 | 0 | 0 | | 13 | 1 | 1 | 0 | 1 | | 14 | 1 | 1 | 1 | 0 | | 15 | 1 | 1 | 1 | 1 | For more turns, set DIP 4 to the ON position. This will add 16 turns to the number set by DIPs 5 through 8, as shown in the table. | DIP 4=0 | +0 turns | |---------|-----------| | DIP 4=1 | +16 turns | WARNING: Be sure that the number of turns the actuator is set for is LESS than the number of turns for the valve. The actuator should not stop itself on a fully opened valve. It can damage the valve, and the actuator will lose its position. ## **Torque Settings** To accommodate different valves and other applications with different torque requirements, the actuator can be set to apply different torque on the valve stem when in the seating mode. During normal operation, the actuator will try to reach the speed set by DIP 1 and DIP 2. It will use 100% torque to try and reach the selected speed, regardless of the positions of DIP 10 and DIP 11. Current draw is limited to 1.5 A regardless of settings. #### Seating power settings: | DIP 10 | DIP 11 | Power | |--------|--------|-------| | OFF | OFF | 16% | | OFF | ON | 33% | | ON | OFF | 66% | | ON | ON | 100% | Please see the box to the right and the tables below to select the power setting that is right for your application. To deal with sticking valves, at the beginning of the first reversing movement after the seating ("zeroing") of the valve, the actuator will apply double the power set by DIP 10 and DIP 11 (up to 100% power.) This "pull out" function is always enabled. **WARNING:** High power settings can supply enough torque to damage your valve. Please be cautious, especially when using the 100% power setting. ## **Speed and Torque Details** The maximum speed of the actuator can be set by using the first two positions of the DIP switch selector. As a result of this setting, the actuator will limit the maximum speed. The tables below show the time required to complete one turn. The seating torque depends on the voltage provided in the power connection and on the seating power settings on DIP 10, 11 as shown below. #### RCL-AC-xxxAx Actuators | Speed: | | | |--------|-------|--------------------------| | DIP 1 | DIP 2 | Time for
1 turn (sec) | | OFF | OFF | 7 | | OFF | ON | 3 | | ON | OFF | 2 | | ON | ON | 1 | | Torque: | | | | |---------|--------|-------------------------|-----------| | DIP 10 | DIP 11 | Seating Torque (in-lbs) | Operating | | OFF | OFF | 12 | torque is | | OFF | ON | 20 | 100% | | ON | OFF | 38 | | | ON | ON | 48 | | **NOTE**: If actuator is RCJ-AC-xxxAx, divide torque values by 3. **To convert in-lbs to Nm, divide by 9.** #### RCM-AC-xxxAx Actuators | Speed: | | | |--------|-------|--------------------------| | DIP 1 | DIP 2 | Time for
1 turn (sec) | | OFF | OFF | 23 | | OFF | ON | 11 | | ON | OFF | 7 | | ON | ON | 4 | | Torque: | | | | | | | | |--|--------|-------------------------|-----------|--|--|--|--| | DIP 10 | DIP 11 | Seating Torque (in-lbs) | Operating | | | | | | OFF | OFF | 35 | torque is | | | | | | OFF | ON | 60 | 100% | | | | | | ON | OFF | 115 | | | | | | | ON | ON | 145 | | | | | | | NOTE: If actuator is RCK-AC-xxxAx, divide torque values by 3. To convert in-lbs to Nm, divide by 9. | | | | | | | | #### RCH-AC-xxxAx Actuators | Speed: | | | |--------|-------|--------------------------| | DIP 1 | DIP 2 | Time for
1 turn (sec) | | OFF | OFF | 90 | | OFF | ON | 45 | | ON | OFF | 30 | | ON | ON | 18 | | Torque: | | | | | | | | |---------------------------------------|--------|-------------------------|-----------|--|--|--|--| | DIP 10 | DIP 11 | Seating Torque (in-lbs) | Operating | | | | | | OFF | OFF | 120 | torque is | | | | | | OFF | ON | 205 | 100% | | | | | | ON | OFF | 400 | | | | | | | ON | ON | 497 | | | | | | | To convert in-lbs to Nm, divide by 9. | | | | | | | | RCF-AC-xxxAx Actuators | Speed: | | | |--------|-------|--------------------------| | DIP 1 | DIP 2 | Time for
1 turn (sec) | | OFF | OFF | 186 | | OFF | ON | 94 | | ON | OFF | 56 | | ON | ON | 38 | | Torque: | | | | | | | |---------------------------------------|--------|-------------------------|-----------|--|--|--| | DIP 10 | DIP 11 | Seating Torque (in-lbs) | Operating | | | | | OFF | OFF | 230 | torque is | | | | | OFF | ON | 380 | 100% | | | | | ON | OFF | 720 | | | | | | ON | ON | 915 | | | | | | To convert in-lbs to Nm, divide by 9. | | | | | | | #### Signal Loss and Calibration For actuators that are not connected to a UPS (Uninterruptible Power Supply), the loss of signal will be simultaneous with power loss. Consequently, the actuator will not be able to move anywhere. In the shutdown process, the actual position is automatically saved to the internal EEPROM. [This saving of the position only happens for min. 18 VDC supplies] When power is restored, the actuator will "know" its location and will simply start to follow the signal as received. **IF YOU HAVE TO** turn the actuator manually when its power is turned off, it will lose its position, and it will need to be re-zeroed (as described in sub-section 3). 2. For actuators that are connected to a UPS the behavior on signal loss can be set as follows: #### Normal position of DIP 9: OFF With DIP 9 in the off position, the actuator will ignore the signal if it is lost (i.e.: if the signal falls below 0.700 V or 2.80 mA) and simply remain in its current position. **Note:** if the sensing resistor R66 is removed (for 1-5 V input signals), we recommend placing a 10K resistor between signal and signal GND. #### Predetermined signal loss position DIP 9: ON With DIP 9 in the on position, the actuator will move to a predetermined position when the signal is lost (i.e.: if the signal falls below 2.80 mA or 0.700 V). Setting of the predetermined signal loss position: - a.- turn DIP 9 to the "off" position - b.- re-zero the actuator by sending and holding an input signal between 2.80 and 4.16 mA (0.700 and 1.04 V) wait until the device is re-zeroed, (i.e.: valve is closed) - c.- by varying the input signal, move the actuator to the position that is going to be the predetermined signal loss position. - d.- switch DIP 9 to the "on" position. The current actuator position will be saved as the default signal loss position. (The default signal position is an absolute actuator position, not a signal value.) #### 3. Re-zeroing the actuator and initiating calibration routine: The actuator will re-zero when the input signal is between 2.80 and 4.16 mA (0.700V and 1.04 V). It will turn clockwise until the actuator has reached the fully closed position of the valve. If the valve is removed for any reason, the calibration routine must be initiated on the actuator manually. This is done by toggling DIP 12 (switch position, then back to the original position) while the actuator is powered. This will prevent damage to the valve. **If you need to re-zero in the opposite direction** (i.e.: for pressure regulators, which typically go to the "top" fully open position at 4 mA) change the setting of DIP 12 and cycle power. #### 4. Feedback calibration: [RCx-AC-xxxAF model actuators only] The current feedback will be calibrated from the factory. #### To re-calibrate the feedback: - a.- Turn off the actuator and disconnect the feedback and input signals. If possible, remove the actuator from the valve. - b.- Connect the feedback signal to the signal input. Also connect the power and signal grounds. - c.- Power up the actuator with this "signal loop-back" setup. - d.- Short SP1. It will automatically run a special routine to calibrate the feedback signal to the signal input. The whole process takes about 1.5 seconds. - e.- Turn off the power and reconnect the actuator as normal. #### **Manual Override** The RCx-xxxAx actuator with manual override can also be certified for hazardous locations. The additional manual override gear case and handle has no effective ignition sources and can therefore be used in all hazardous locations for which the actuator enclosure is certified for. Operation of the manual override when the actuator is powered will be difficult as the actuator will try to maintain the valve in the position it has been commanded to. Power should be removed if the valve is to be moved manually. If the valve is moved with the manual override when its power is turned off, it will lose its position, and it will need to be re-zeroed (as described in the Signal Loss and Calibration section). #### **Troubleshooting** Upon noticing a problem, your first step should almost always be to recalibrate the actuator by toggling DIP 12 while the actuator is powered. This alone can solve basic problems. See sub-section 3 above for more details. If the actuator does not move, try following these steps: - 1) Re-calibrate the actuator. This will move the actuator regardless of what signal it is receiving. - 2) A sticking valve may be the problem. Remove the valve from the actuator, and re-test the actuator. - 3) Remove power. Re-check the wiring and the power/signal apparatus. Power actuator and re-calibrate. If the problem persists, please call Rotork for technical support. Any parts found to be defective should be examined and/or replaced by Rotork. #### CERTIFICATIONS **Hazardous Location Rating (Ex)** Actuator model number: RCx-BxxAx #### Canada: Class I, Division 1, Groups B, C, D (T5) Class II, Division 1, Groups E, F, G (T5) CSA C22.2 No. 30-M1986 CSA C22.2 No. 25-17 Ambient temperature range: -50°C to +40°C * Serial number will be engraved on lid. Lid engraving with Canadian hazardous location certification: #### USA: Class I, Division 1, Groups B, C, D (T5) Class II, Division 1, Groups E, F, G (T5) UL 1203 (Edition 5.0) Ambient temperature range: -20°C to +40°C * Serial number will be engraved on lid. Lid engraving with USA hazardous location certification This actuator is approved for: Cet actuateur est approuvé pour: Class I, Division 1, Group B,C,D Class II, Division 1, Group E,F,G CAUTION: DO NOT REMOVE COVER WHEN EXPLOSIVE ATMOSPHERE IS PRESENT, SOME MODELS MAY CONTAIN AN INTERNAL BATTERY, KEEP AS SEMBLY TIGHTLY CLOSED WHEN IN OPERATION. NOTE: A CONDUIT SEAL SHALL BE INSTALLED WITHIN 50MM (2") OF THE ENCLOSURE. ATTENTION: NE PAS RETIRER LE COUVERCLE LORSQU'UNE ATMOSPHÈRE EXPLOSIVE EST PRESENTE, CERTAINS MODELES PEUVENT CONTENIR UNE BATTERIE INTERNE. GARDEZ L'ENSEMBLE FERME LORSQU'IL EST EN O PERATIO NOTE: UN SCELLEMENT DOIT ÊTRE INSTALLÉ À MOINS DE 50MM (2") DU BOÎTIER. > ATTENTION, CONSULT ACCOMPANYING DOCUMENTS ATTENTION, CONSULTER LES DOCUMENTS JOINTS SN: Model #: Rxx-B 1.5 A T_a = -20 to +40 °C QPS Project No. LR1667-1 110-240 VAC, 50/60 Hz ## International (IECEx) – available upon request: Ex db IIB+H2 T3 Gb IEC 60079-0:2017, 7th Edition IEC 60079-1:2014, 7th Edition *Serial number will be engraved on the lid. ## **Electrical Compliance (EC)** #### Canada & USA: CSA.UL 61010-1 #### **Europe:** EC Declaration of Conformity (CE) UK Declaration of Conformity (UKCA) ## **Electromagnetic Compatibility (EMC)** **United States:** FCC 47 CFR Part 15, Subpart B (Unintentional radiators), Class A Canada: ICES-001 Issue 5, July 2020, Class A Europe: EN 61326-1:2013 (Group 1, Class A; Industrial electromagnetic environment) IEC 61000-6-2:2016 IEC 61000-6-4:2018 ## **Dust and Water Ingress Protection (IP)** IP68, certified using standard IEC 60529:2013. ## **ACTUATOR DIMENSIONS** ## RCJ/RCL/RCM -AC-xxxAx models ## **RCH-AC-xxxAx model** ## **RCF-AC- xxxAx models** ## **PART NUMBER BREAKDOWN** | Full Part Number: | R C | - | - A | c - [| | | Ax - | | - | | | | | | |--|---------------------------|--------------|-------------|---|------------|-------------|------------------------|--------------|------|-------|----------|--------|--------------|---| — | | | . / | | _ | _ | , | _ | | 7 | | | | | | And Anicol | The True of | / griet | ` / | // | / / | Jue Part | / | Zet | / | | | | | State of Sta | Record Control | Opiion | | ^{11,0} 00 | | (Š) | | | MILL | ×/ | , | | | | | See de la light | | Sile | Zaj Mi | / | / / | Jurting Kit | | 26 Sept | -/ | , | | | | | | | \$ \ \ \\ \\ \ | | 161, Sc | <i>%/</i> | M | 3111/ | / \si | TAG / | | | | | | | | R - | Í <u>.</u> | | | _ | | _ | Valve N | /
//anufa | actu | urers | s Par | rt # / | CU# | 7 | | | | | + | | | | | | | | | | | | | | | | | | 0 | No Val | ve or M | ountin | g K | it | | | | 1 | | | | | | | 1 | Mounti | ng Kit, (| Custon | ner | Sup | plies | s Val | lve, | | | R R-Series | | | | | | does n | ot send | valve | to I | Hanl | bay | | | | | | ┧ | | | | 2 | l | ng Kit, (| | | Sup | plies | s Val | ve, | | | C Continuous | | | | | | l | valve to | | - | | \ | /-l | _ | | | D Discrete J Extra Low | Torque | | AB | Analo | | ıal Boar | ng Kit, I | nanba | уР | TOVI | ues v | vaive |) | ┨ | | L Low Torque | | | | l | | | u
d Isolati | ed with | h Fe | eedl | back | | | | | M Medium To | | | | l | | | d Isolat | | | | | | | | | H High Torqu | e (Add. Gear | · Stage) | AS | Modb | us Co | ntrol wit | h Feedl | oack | | | | | | | | F F-Gear Sta | ge (Add. Ge | ar Stage) | DC24 | Contir | nuous | TTL Bo | ard, 0V | input . | / 24 | 4V f€ | edb | ack s | signal | | | | | | | l | | | ard, 0V | | | | | | - | | | | | | | l | | | , 0V Inp | | | | | - | | | | | | | | l | | | l, 0V Inp
nit Swite | | | | | - | | | | | | | No Op | | ne bo | ara, Em | iii Owite | 71103, 1 | THE | iiiia | ı Out | · Oii | | | | | | н | Intern | | ter | | | | | | | | | | | | | 0 Cab | le Gland | (Spec | ify Ca | ble & le | ngth at | added | d co | st) | | | | 1 | | | | | ie actua | | | | | re, 0 ir | ndic | cates | s an | NPT | plug | | | | | | tom Dua | _ | | | | | | | | | | | | | | | CK 5 P | | | | | | | - | | | | | | | | | | | | | | ible al | iu r | riug | | | | | | | | | | K 5 Position Connector Only K 6 Position Connector Only | | | | | | | | | | | | | 0 | Standard A | | | | | | | | | | | | _ | | | В | Hazardous | | | | | | | | | | | | | | | S | Stainless S | | | | | | | | | | | | | | 0 | No Special | Stainless S | steel Ha | zardou | IS LOC | ations-F | kated | 1 | | | | | | | | | 110-240 VA | • | upply | | | | | | | | | | | | | В | Battery Bac | | appi) | | | | | | | | | | | | | вѕ | Bottom Sto | • | | | | | | | | | | | | | | G | G-Stage Ga | ate Valve (w | ith MCN | or M | CL) | | | | | | | | | | | HT | High Tempe | | ınting Ki | t | | | | | | | | | | | | L1 | Linear 16 T | | | | | | | | | | | | | | | L2
M | Linear 8 TP
Manual Ove | | | | | | | | | | | | | | | | Position Inc | | i-turn) | | | | | | | | | | | | | | Quick Relea | ` | , | | | | | | | | | | | | | RS | Reverse Sp | ring Return | | | | | | | | | | | | | | s | Spring Retu | ırn | | | | | | | | | | | | | #### LABEL BREAKDOWN ## **Firmware Version** AF-1.05 MM = Multiturn AB-1.05 MML = Multiturn Low Torque MMUL = Multiturn Extra Low Torque AS-1.05 QM = Quarter turn QM97 = Quarter turn 97° DT-2.01 DC-2.01 M-Dx V2.34 ## **Actuator Supply Voltage** 12-24 VDC @ 3.0 A or 110-240 VAC, 50/60 Hz @ 1.5 A ## **Circuit Board Version** Ax-8.09 Dx-10.41 Px-10.3 # rotork www.hanbayinc.com 110-240 VAC, 50/60Hz, 1.5A (336) 659 3400 POWER OFF UNIT BEFORE REMOVING COVER NC, 27103 Made in USA S/N:19103201-01 #### **Actuator Part Number** Refer to part number breakdown for available options. #### **QR Code** Scan this QR code for a direct link to the user manual for your unit! ## Actuator Serial Number This serial number is unique for each individual unit and is directly tied to your order/invoice number. > As part of a process of on-going product development, Rotork reserves the right to amend and change specifications without prior notice. Published data may be subject to change. For the very latest version release, visit our website at www.rotork.com > The name Rotork is a registered trademark. Rotork recognises all registered trademarks. Published and produced in the UK by Rotork, POLJB0424