
Pakscan Cables, Distances, and Communication Speeds

Introduction

Pakscan systems operate over a 2 wire cable that interconnects all the points on the system. The cable must be wired in a ring fashion such that the ring originates at the master station, visits each field unit in turn and eventually returns to the master station. The length of the cable used for the loop will be determined by the site topography and the system performance required. The speed of communicating events will depend on the data baud rate and number of field units. The baud rate is dependant on the number of field units and the cable parameters, its total resistance and capacitance.

Loop Distance

The system uses a 2 wire (1 pair) cable. The length of the *cable* is the circumference of the circle described. This is the total distance covered by the cable around the site.

Notice that the total length of the *conductors* of the cable is 2 times this circumference as it is a cable pair.

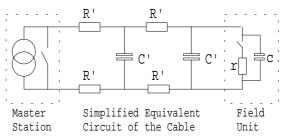
Loop Resistance (R)

The total resistance of the loop cable will be the resistance of the 2 conductors added together. Cable suppliers specify the cable resistance in Ohms/km. The figure will be for a single conductor of the stated cross sectional area. The loop resistance is calculated by

Total Conductor Length x Resistance per unit length

The total conductor length is 2 times the cable distance.

Loop Capacitance (C)


The capacitance of the cable will be the capacitance between the 2 conductors. cable manufacturers specify this figure in nF/m, or pF/m, it will be different for various insulation materials, a particular cable diameter and construction. The total loop capacitance is calculated by

Total Cable length x capacitance per unit length

The total cable length is the cable distance.

Pakscan Loop Equivalent Circuit

The Pakscan loop distance is limited by the total network capacitance (the capacitance of all the field units plus the capacitance between the conductors) and the total resistance of the two conductors. There are two limiting factors in determining the maximum values for R and C that can be tolerated.

Line Charge Time T1 - the capacitance must be charged to the maximum line voltage by the 20mA current source from the master station.

Line Discharge Time T2 - the capacitance must be discharged to zero by the master station 'switch'.

Master Station Transmission

Field Unit Response

Line Voltage Waveform

Line charging is virtually independent of line resistance since the master station source is a constant current.

The *line discharge* generates an exponential pulse edge delay.

The master station transmission has to work into the line and field unit total resistance and capacitance whilst the field unit response open circuits the line. The

Pakscan Cables, Distances, and Communication Speeds

value for the line voltage can be adjusted between 9 and 15 volts.

The values tolerated by the system for T1 and T2 are given below:

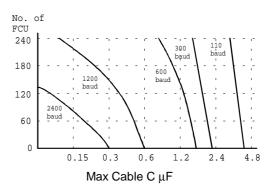
Baud Rate	T1 _{max} = T2 _{max} (mSec)
110	2.20 mS
300	0.83 mS
600	0.41 mS
1200	0.21 mS
2400	0.10 mS

Maximum Values for the network R and C

Each field unit contributes to the overall system C and R values. The value of 'r' is minimal (less than 1 ohm) and 'c' is 2 nF per field unit.

The maximum value of R can be predicted as the current of 20 mA has to be established through the cable and field unit resistance. The absolute maximum value of network resistance that may be tolerated is 750 ohms. The recomended maximum cable resistance is 500 ohms to ensure adequate safey margins.

Maximum Resistance (ohms) of the Cable excluding field units		
Baud	Number of field units	
Rate	0 to 240	
110 - 2400	500	


Note: 1 field unit has 1.14 ohms resistance

Predicting the value of C by using a computer modeling programme that simulates the components of the master station, each field unit and the cable the table below may be constructed.

Maximum Capacitance (μF) of the Cable								
Baud	Number	Number of field units						
Rate	0	0 60 120 180 240						
110	4.5	4.5 4.36 4.24 4.10 3.97						
300	2.1	1.98	1.84	1.70	1.57			
600	1.54	1.54 1.41 1.27 1.14 1.02						
1200	0.6	0.47	0.34	0.20	0.07			
2400	0.3	0.17	0.04	N/A	N/A			

Note: 1 field unit has 2.2nF capacitance

The maximum values of C for the cable are shown diagrammatically below:

Cables

The recommended cables to use for the loop wiring should be a twisted pair with an overall screen. The construction will usually be copper conductors and pvc insulation. There may be additional outer protection in the form of armour.

This type of cable has a reasonably constant performance characteristic and the following is typical of the cable parameter data found from suppliers such as Beldon and BICC.

Cross Section (mm ²)	Resistance Ω/km	Capacitance pF/m
0.5 solid	36.8 Ω/km	115 pF/m
0.5 flexible	39.7 Ω/km	115 pF/m
1.0 solid	18.4 Ω/km	115 pF/m
1.5 stranded	12.3 Ω/km	115 pF/m

Maximum Loop Distances

From the cable data and the calculations for the maximum permissible resistance and capacitance at each baud rate the maximum cable distances can be derived for each baud rate.

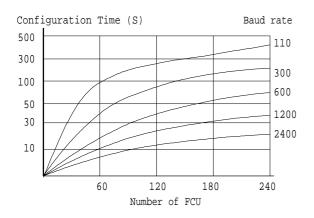
Loop Distance (km) with 1.5mm ² cable						
Baud	Number of FCU					
Rate	60	60 120 240				
110	20.3 km	20.3 km	20.3 km			
300	17.1 km	15.9 km	13.7 km			
600	12.2 km	11.1 km	8.8 km			
1200	4.1 km	2.9 km	0.6 km			
2400	1.5 km	0.3 km	N/A			

Note that the loop distance is the length of the twisted pair cable including both the cores.

Communication Speeds

The speed of interest is the time taken by the system to collect data from the field and issue commands to the field. This will dependent on several variables.

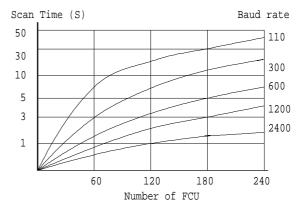
Baud Rate - the data transfer bit rate or Baud rate. This is the fundamental speed at which the data bits are transferred along the 2 wire loop.


Number of Field Units - the number of field units to be scanned on the 2 wire loop. A small number of field units may be scanned faster for a given baud rate than a large number.

Quantity of Data - the amount of data that is to be transferred from each field unit will affect the time it takes to complete scanning each field unit.

Configuration Time

Configuration is a much more complex process than scanning since the field units have to be identified and their position on the loop recorded. During configuration there are various timeout periods that must elapse.


	Configuration Times (seconds)							
No. of	Baud rate							
FCU	2400	2400 1200 600 300 110						
60	5.4	10.8	21.6	43.2	118.2			
120	10.4	20.8	41.6	83.2	227.3			
180	15.4	30.8	61.6	123.2	336.4			
240	20.4	40.8	81.6	163.2	445.5			

Scanning Time

In the tables it is assumed that only one field unit has new data to report. As scans occur all the time the probability is that there is no new data from any unit during a scan as the valves will not have changed position. If all the field units have new data then the scan time approaches half the configuration time.

Scan Time (seconds)								
No. of	Baud Rate							
FCU	2400	2400 1200 600 300 110						
60	0.39	0.77	1.54	3.08	8.4			
120	0.89	1.77	3.54	7.08	19.3			
180	1.39	2.77	5.54	11.08	30.3			
240	1.89	3.77	7.54	15.08	41.2			

Commands

Commands have priority over status requests. When there is a command to sent to a field unit the status scan is suspended and the command issued. If there are several simultaneous commands to issue these will be interleaved within status requests.

Command Times (milli-sec)

Baud Rate	Time (mSec)
2400	27
1200	54
600	108
300	216
110	432

Command instructions should only be sent when there really is an action required otherwise the scanning time will be increased whilst the commands are processed. If the host DCS or PLC uses Function Code 15 to write

Pakscan Cables, Distances, and Communication Speeds

multiple commands all the commands will be sent to the field units. The chances are that many will be simply a repeat of an earlier command and if this is the case then there will be no resultant action, the result will be a slowing down of the data collection.

Making the Choice

Determining the decision between loop distance, number of field units and communication speed demands a knowledge of the application of the automation system.

If there is a need to obtain field data quickly then the loop distance will generally have to be kept short. As more field units are added this will have two fold effect, the loop will generally get bigger, so the distance will increase and at the same time there are more connected devices.

In general the longer loops are subject to a limit on the cable resistance whilst the higher speeds are limited by the cable capacitance. The resistance of the cable can be reduced by using conductors with a larger cross sectional area. The capacitance for a pvc cable will generally remain constant.

Special cables are available with reduced capacitance if the application demands. By employing these cables the speed may be increase.

In any decision the resistance of the connections through terminals and junction boxes should not be ignored.

The figures given in these notes have a degree of safety margin. However it is not recommended to design the cable runs without retaining some margin for error.

		telephone	telefax		telephone	telefax
	Australia Ballarat	(53) 381566	(53) 381570	Korea (South) Seoul	(02) 565 4803	(02) 565 4802
	Australia Brisbane	(07) 32946139	(07) 32946082	Malaysia Kuala Lumpar	(03) 2446418	(03) 2446416
	Australia Sydney	(02) 567 2735	(02) 567 2739	Netherlands Rotterdam	(010) 414 6911	(010) 414 4750
UK head office	Canada Calgary	(403) 569 9455	(403) 569 9414	Russia Moscow	(095) 320 3344	(095) 320 4311
Rotork Controls Ltd	Canada Edmonton	(403) 449 6663	(403) 449 6578	Saudi Arabia Al Khobar	(03) 8579956	(03) 8577170
telephone Bath (01225) 733200 telefax (01225) 333467	Canada Montreal	(514) 355 3003	(514) 355 0024	Singapore	4571233	4576011
1010102 (01220) 000401	Canada Sarnia	(519) 337 9190	(519) 337 0017	Spain Vizcaya	(94) 676 4244	(94) 676 4864
USA head office	Canada Toronto	(905) 602 5665	(905) 602 5669	USA	(716) 328 1550	(716) 328 5848
Rotork Controls Inc telephone Rochester (716) 328 1550	Canada Vancouver	(604) 526 9948	(604) 526 9986	USA Chicago	(815) 436 1710	(815) 436 1789
	China Beijing	(10) 461 9442	(10) 461 9502	USA Houston	(713) 782 5888	(713) 782 8524
telefax (716) 328 5848	China Shanghai	(021) 62198185	(021) 62197311	USA New York City	(201) 646 9596	(201) 646 9288
As we are continually developing our products,	France Paris	(1) 48 35 44 99	(1) 48 35 42 54	USA North East	(716) 377 4444	(716) 377 9804
their design is subject to change without notice.	Germany Hilden	(02103) 54098	(02103) 54090	USA Philadelphia	(609) 223 1926	(609) 223 9012
The names Rotork and Modbus are registered	Hong Kong & S. China	2 520 2390	2 528 9746	Venezuela Barcelona	(08) 1761460	(08) 1761524
trade marks	India Madras	(44) 6257107	(44) 6257108	Venezuela Caracas	(02) 2636533	(014) 250822
	Italy Milan	(2) 8241001	(2) 89200301	Venezuela Maracaibo	(061) 979216	(061) 987987
	Indonesia Jakarta	(21) 5806764	(21) 5812623			

